The Hsp70 Homologue Lhs1p Is Involved in a Novel Function of the Yeast Endoplasmic Reticulum, Refolding and Stabilization of Heat-denatured Protein Aggregates
نویسندگان
چکیده
Heat stress is an obvious hazard, and mechanisms to recover from thermal damage, largely unknown as of yet, have evolved in all organisms. We have recently shown that a marker protein in the ER of Saccharomyces cerevisiae, denatured by exposure of cells to 50 degrees C after preconditioning at 37 degrees C, was reactivated by an ATP-dependent machinery, when the cells were returned to physiological temperature 24 degrees C. Here we show that refolding of the marker enzyme Hsp150Delta-beta-lactamase, inactivated and aggregated by the 50 degrees C treatment, required a novel ER-located homologue of the Hsp70 family, Lhs1p. In the absence of Lhs1p, Hsp150Delta-beta-lactamase failed to be solubilized and reactivated and was slowly degraded. Coimmunoprecipitation experiments suggested that Lhs1p was somehow associated with heat-denatured Hsp150Delta- beta-lactamase, whereas no association with native marker protein molecules could be detected. Similar findings were obtained for a natural glycoprotein of S. cerevisiae, pro-carboxypeptidase Y (pro-CPY). Lhs1p had no significant role in folding or secretion of newly synthesized Hsp150Delta-beta-lactamase or pro-CPY, suggesting that the machinery repairing heat-damaged proteins may have specific features as compared to chaperones assisting de novo folding. After preconditioning and 50 degrees C treatment, cells lacking Lhs1p remained capable of protein synthesis and secretion for several hours at 24 degrees C, but only 10% were able to form colonies, as compared to wild-type cells. We suggest that Lhs1p is involved in a novel function operating in the yeast ER, refolding and stabilization against proteolysis of heatdenatured protein. Lhs1p may be part of a fundamental heat-resistant survival machinery needed for recovery of yeast cells from severe heat stress.
منابع مشابه
Transient ER retention as stress response: conformational repair of heat-damaged proteins to secretion-competent structures.
Mechanisms to acquire tolerance against heat, an important environmental stress condition, have evolved in all organisms, but are largely unknown. When Saccharomyces cerevisiae cells are pre-conditioned at 37 degrees C, they survive an otherwise lethal exposure to 48-50 degrees C, and form colonies at 24 degrees C. We show here that incubation of yeast cells at 48-50 degrees C, after pre-condit...
متن کاملCer1p functions as a molecular chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae.
Cer1p/Lhs1p/Ssi1p is a novel Hsp70-related protein that is important for the translocation of a subset of proteins into the yeast Saccharomyces cerevisiae endoplasmic reticulum. Cer1p has very limited amino acid identity to the hsp70 chaperone family in the N-terminal ATPase domain but lacks homology to the highly conserved hsp70 peptide binding domain. The role of Cer1p in protein folding and ...
متن کاملHuman TorsinA can function in the yeast cytosol as a molecular chaperone
TorsinA (TorA) is an AAA+ (ATPases associated with diverse cellular activities) ATPase linked to dystonia type 1 (DYT1), a neurological disorder that leads to uncontrollable muscular movements. Although DYT1 is linked to a 3 bp deletion in the C-terminus of TorA, the biological function of TorA remains to be established. Here, we use the yeast Saccharomyces cerevisiae as a tractable in vivo mod...
متن کاملRegulation and recovery of functions of Saccharomyces cerevisiae chaperone BiP/Kar2p after thermal insult.
We described earlier a novel mode of regulation of Hsp104, a cytosolic chaperone directly involved in the refolding of heat-denatured proteins, and designated it delayed upregulation, or DUR. When Saccharomyces cerevisiae cells grown at the physiological temperature of 24 degrees C, preconditioned at 37 degrees C, and treated briefly at 50 degrees C were shifted back to 24 degrees C, Hsp104 exp...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 137 شماره
صفحات -
تاریخ انتشار 1997